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To sustain acceptable indoor air quality in a building, it is essential to frequently inspect and clean the Heating,
Ventilation and Air-Conditioning (HVAC) ductwork. Nowadays the condition inspection is mostly conducted
manually according to the video acquired by a pipeline robot. This situation has been significantly resulting in
subjectivity, high-cost and inefficiency for HVAC ductwork cleaning and maintenance.
In this paper an automatic defect and contaminant inspection systemofHVAC duct is developed. The system con-
sists of an infrared-CCD diagnosis device and a novel supervisedmethod for duct inspection by cascading seeded
k-means and C4.5 decision tree. The seeded k-means feature-clustering method first partitions the features of
training instances into k clusters using Euclidean distance similarity. C4.5 decision tree is then used to refine
the decision boundaries by learning the subgroups within the cluster. Finally the decisions of the k-means and
C4.5 methods are combined to achieve the inspection results. To improve the classification performance on the
minority classes as well as reduce the computation load during the process, Tabu search is employed for the fea-
ture selection and the cost-sensitive function is introduced into Tabu search. Experimental results on real-world
data sets demonstrate that the proposed system is effective and efficient in inspecting the condition of HVAC
ductwork.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

By 2009, the total length of HVAC ductwork systems in commercial,
healthcare, and school buildings in Shanghai, China had exceeded
15,000 km [1]. Such HVAC ductwork systems in a building are a source
of contaminants introduced into occupied spaces. To reduce or elimi-
nate contaminant introduction, properly performing inspection and
cleaning services of the systems become necessary. According to the
standard of National Air Duct Cleaners Association (NADCA) in the
U.S., the recommended inspection frequencies for HVAC systems are
likely 1 or 2 years [2]. However the ductwork systems are usually
installed below the ceiling of buildings and have many bends and
branched ducts, it is very difficult to frequently inspect and clean the
ductwork only by manual work. Similar research has been addressed
on sewer inspection and its application needs [3–7], there are a few of
commercial or testing inspection systems for HVAC ductwork [8].
Among these existing systems, the sewer inspection systems were de-
veloped based on a mobile robot (e.g. pipeline robot) equipped with a
Closed Circuit Television (CCTV) sub-system. In most cases, when the
pipeline robot goes through the ducts, the videos or digital images
from the CCTV are gathered and saved in storage system. The off-line
a (No. 61221003).
or online inspection is thenmanually conducted by trained and certified
inspectors. Such manual inspection of duct condition has a number of
drawbacks including subjectivity, varying standards, high costs and
low efficiency. As a result, an automatic condition inspection system is
required to improve accuracy, efficiency and economy of the duct in-
spection work.

The goal of our researchwork is to develop a portable and automatic
defect and contaminant inspection system installed on pipeline robot.
The inspection system is capable of automatically detecting defect and
assessing contaminants based on visual feedback of the mounted
CCTV system.

Duct condition detection is a difficult classification problem
because of complex ductwork background patterns, irregularly cor-
roded areas, settled dust, and lack of objective criteria. Some physical
defects may be camouflaged in the backgrounds of corroded areas or
settled dust. The physical defects and contamination levels are spec-
ified by vague terms and attributes, this usually results in variations
in manually labeling by experts due to lack of objective criteria,
further causing a problem in the interpretation of duct condition in
an image. In addition, the duct environments and physical image
can often vary from lighting condition etc. These may cause the
segmentation method to identify wrong regions of interest (ROI).
In summary, all of these issues complicate the task of duct inspec-
tion. So far it is hard to find reliable and robust features to accurately
assess the duct condition.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2014.02.001&domain=pdf
http://dx.doi.org/10.1016/j.autcon.2014.02.001
mailto:jbsu@sjtu.edu.cn
http://dx.doi.org/10.1016/j.autcon.2014.02.001
http://www.sciencedirect.com/science/journal/09265805
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The ducts should be classified into three classes: normal ducts,
contaminated ducts, and physical defect ducts based on the purpose
of cleaning and restoration [2]. In this work, we propose a novel
approach based on seeded k-means feature-clustering and C4.5
decision tree to perform automatic inspection and assessment of
duct condition. The decisions of combining seeded k-means and
C4.5 methods are used to achieve the inspection results. To improve
real-time as well as the detection performance on minority class, we
focus on two main problems: feature selection and imbalance data
distribution, which need to be improved in anomaly or defect detec-
tion. Tabu search (TS) with cost-sensitive function is employed for
feature selection. Combining k-means and the C4.5 is used to relieve
imbalance data distribution and acquire high performance in defect
and contaminant detection of an HVAC duct. Meanwhile, the
inspected 3-D interior surface of the duct can be reconstructed in
real time for the assessment.

The rest of this paper is organized as follows. Section 2 provides a lit-
erature review about the relatedwork. Section 3 describes the proposed
systematic methodology which includes feature extraction, feature se-
lection by the proposed Tabu search and cascading detection algorithm.
The experimental setup and results are presented in Section 4. Section 5
concludes the work.

2. Reviews on pipeline inspection technology and
associated methodologies

Currently there are rarely available technologies for automated con-
dition inspection of HVAC ducts. Alternatively, due to technical and
methodological similarities, we review the existing pipeline inspection
technologies, defective surface inspection methodologies, and associated
machine learning methods.

The major technologies applicable to the pipeline inspection are as
follows: Closed-Circuit Television (CCTV), ultrasonic, laser, Infra-Red
thermography, and so on [9]. Pipeline inspection systems based on
CCTV or digital images include an early multi-sensory robotic system
called KARO [3], and Pipe Inspection Real-Time Assessment Technique
(PIRAT) [4]. Pipe detection techniques based on laser profiling [6] and
ultrasonic profiling [10] are implemented to inspect sewer and oil pipe-
lines recently. In Ref. [11], the Ground Penetrating Radar (GPR) and
Digital Scanning and Evaluation Technology (DSET) are reported,
which are utilized to collect accurate information about the condition
of a buried pipeline. There are some similarities between pipeline in-
spection and HVAC duct inspection, such as similar working condi-
tions and the objectives of inspecting physical defects. However,
one of main purposes of HVAC duct inspection is detecting surface
contaminants and deposits unlike pipeline inspection. Thus pipe de-
tection techniques based on laser profiling, ultrasonic profiling, and
so on are not suitable for HVAC duct inspection. In these technolo-
gies, the methods based on CCTV videos and digital images can
providemuchmore visualized pipeline information. The visual infor-
mation can be used by inspectors during and after the pipe inspec-
tions and can be easily fused with other sensor data. As a result, the
technology based on digital images is currently one of the most pop-
ular technologies for HVAC duct inspection. The methods of anomaly
detection or surface defect inspection via images can be applied to
HVAC duct inspection.

Anomaly detection or surface defect inspection via images [12]
developed using machine learning techniques like artificial neural-
networks [5,6], radial basis network [12], decision tree [14], SVM,
and others [12] have become popular because of their high detection
accuracies at low false positive rates. However, the anomaly detec-
tion related studies cited above have two problems which need to
be improved: 1) Feature selection should be carried out to reduce
the cost of extracting features and improve the classification accura-
cy. 2) The imbalance data distributions in anomaly or defect detec-
tion are often neglected. Generally, the classifier often tends to
recognize new samples as the majority class without reducing the
total recognition rate, so the classification precision to the minority
class is very low. There are many cases where a small imbalance
may be very harmful in difficult-to-learn tasks with overlapping
classes and/or in the absence of a sufficient number of training points
[15]. HVAC duct inspection is done to recognize the anomalous ducts
which are rare. Thus, class imbalance is a very important issue in
anomaly detection for an HVAC duct.

The approaches of feature selection can be classified into filter,
wrapper, and sub-optimal searching and optimal searching approaches
[15]. Among them, Tabu search has proved to be a promising technique
for feature selection with respect to the quality of the obtained feature
subset and computation efficiency [16]. In refs. [16,17], it has been
shown that not only could Tabu search obtain the optimal or near-
optimal solution, it also required less computational effort than other
suboptimal and genetic algorithm based methods. The integration of
neighborhood, memories, aspiration criteria, tabu moves, and diversifi-
cation strategies makes TS more effective and more complicated than
classical feature search algorithms. However, they did not take into
account the problem of unbalanced data distribution. To cope with im-
balance data, a number of approaches have been proposed, which
evolve along four major directions [15]: 1) Data-level approaches,
such as oversampling of the small class or undersampling of the large
class; 2) cost-sensitive approaches, oneway is to use different C param-
eters in the cost function for the two classes in classifiers; 3) feature se-
lection; and 4) ensemble, fusion, and cascading of multiple machine
learning methods that have a better performance yield over individual
methods [13].

In view of the diversities of feature distributions within a class,
we can preprocess the date to employ the clustering algorithms like
k-means, SOM, fuzzy C-mean and so on. The significance of clustering
in an image has been highlighted in Ref. [16]. It is particularly in cases
where there are several categories of defect sub-classes corresponding
to severity and physical manifestation. We choose seeded k-means
[18] for clustering because: 1) it is a data-drivenmethodwith relatively
few assumptions on the distributions of the underlying data and 2) the
greedy search strategy of k-means guarantees at least a local minimum
of the criterion function, thereby accelerating the convergence of clus-
ters on large data sets. However, the data distributions in defect inspec-
tion are unbalanced and noisy, which will give rise to 1) the class
dominance problem when the training data have a large number of
instances from one particular class and very few instances from the re-
maining classes, and 2) the forced assignment problem when the k pa-
rameter in k-means is set to a value that is considerably less than the
inherent number of natural groupings within the training data [13].
The two problems would result in high detection error and even
misclassification of the total minority class. In Ref. [13], cascading
k-means clustering and the ID3 decision tree is used to relieve the two
problems and acquire high performance in anomaly detection. Howev-
er, earlier ID3 has some weaknesses which need to be improved. C4.5
made a number of improvements to ID3, for example, C4.5 can handle
continuous features, training data with missing attribute values, and
attributes with differing costs. Its splitting criterion is the normalized
information gain unlike ID3.

Our work is inspired by the research work in Ref. [13,16,18]. That
is, the seeded k-means feature-clustering method is used to first
partition the training instances into k clusters, then a C4.5 works
on the output from the clustering algorithms. The weighted combin-
ing decision of k-means and C4.5 is finally applied to achieve the final
decision of classification. The best weighting value of combining
decision of k-means and C4.5 is acquired by TS. Note that, to relieve
the imbalance data distributions, we construct new sample sets by
using oversampling and undersampling, and introduce the cost-
sensitive function in TS to alleviate the unbalanced situation by em-
phasizing the importance of high recognition rate of the minority
class in the process of feature selection.
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3. The proposed systematic methodology

3.1. System architecture

The proposed systematic architecture for automated duct inspection
consists of the integratedmethods of pre-processing, segmentation and
feature extraction, clustering using k-means feature-clustering, C4.5
decision tree, interpretation by combining k-means and C4.5, and 3-D
reconstruction and feature selection during the training phase. The
schematic diagram is shown in Fig. 1. Following the diagram, the high
resolution 2-D image of the duct is captured by a digital camera. After
preprocessing the image and image segmentation, some geometric
features, statistical features and features in frequency domain from
the ROI of the image are extracted for the duct condition assessment.
The k-means feature-clustering algorithm partitions the feature space
into k disjoint clusters and computes centroids of k clusters. A C4.5 is
then employed for classifying the image to k classes. The final interpre-
tation (assessment) of duct condition will be made based on results of
weighted combining the k-means clustering and C4.5 classification. In
the training phase, the features and the best weight of combining clas-
sifiers are selected by Tabu search with the cost-sensitive function in
order to reduce the computation complexity and improve the perfor-
mance of detection. The digital images and features can be displayed
by a Graphic User Interface (GUI) in real time. Meanwhile, the 2-D
surface texture image will be recovered to be the 3-D surface texture
map that is displayed in the GUI.

3.2. Segmentation and feature extraction

Several typical duct images are shown in Fig. 2. Due to the rust and
the long-term settled dust, the detected objects may have a similar
color as the dust background. Some defects are camouflaged in the
corroded areas or settled dust. The raw image filtering and imagery
enhancement will be the first step of the work before the image
segmentation.

3.2.1. Image Segmentation
The edge detection methods can greatly reduce the amount of the

information in the case of keeping the shape features and segmented
ROI in an image. There are many commonly used edge detection ap-
proaches, such as morphology methodology [19], Otsu's technique
[14], and Canny edge detection. In the application of pipeline inspection,
the geometrical edges can be effectively segmented by using the mor-
phology methodology [14,19]. However, in the application of duct
inspection, due to the extreme background noise and dirt of the duct
surface, the optimum segmentation parameters vary considerably
Digital CCTV camera
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Fig. 1. Schematic diagram of the inspection system.
from one image to another. So some common edge detection methods
may not be applicable. We adopt a level set based on the Chan–Vese
model (CV) [20] to segment the original image and gain the piecewise
smooth edge. The CV model, which is the active contour to detect ob-
jects in a given image, has the ability of detecting smooth boundaries,
scale adaptation, automatic change of topology, and robustnesswith re-
spect to noise. The approach is based on techniques of curve evolution,
Mumford–Shah functional for segmentation and level sets. The optimal
partition problem is solved by minimizing the following energy func-
tional [20]:

F C; cI ; cOð Þ ¼
Z

inside Cð Þ

u x; yð Þ−cIð Þ2dxdyþ
Z

outside Cð Þ

u x; yð Þ−cOð Þ2dxdy; ð1Þ

where u(x, y) is the gray value of image pixel (x, y), cI is the average
value of the gray inside contour C, cO is the average value of the bright-
ness outside contour C. Generally, the level set of the CVmodel needs to
manually set the initial curve [20]. In this paper, the closed edge ac-
quired from image segmentation by Otsu's method is set as the initial
curve C of the level set, such that the automatic setting initial values
are achieved.

3.2.2. Feature extraction
After SUSAN edge detection, the mathematical morphological oper-

ation is used to remove the noise and acquire the closed edge curves. To
select features by using TS, we extract enough features from duct im-
ages, such as geometrical features, features from gray level co-
occurrence matrix, wavelet-based features, LBP, and other features de-
scribing the roughness, density, shape, etc.

A Geometrical features
We adopt the following simple scalar region descriptors to represent
other shape features besides the area, width and length in ourwork:
(1) Compactness: Compactness is a popular shape description char-

acteristic independent of linear transformations given by [21]

Compactness ¼ region border lengthð Þ2
area

: ð2Þ

The most compact region in a Euclidean space is a circle. Using
the outer boundary, compactness assumes values in the interval
[16,∞) [21]. The compactness of the hole equals that of a circle
approximately. The compactness of other shape objects, such
as joints and cracks, is apparently larger than that of the hole.

(2) Eccentricity: The simplest eccentricity characteristic is the ratio
of the major to the minor axes of an object [21]. Obviously, the
linear shape objects like joints and cracks have the largest ec-
centricity. The eccentricity of the hole is only slighted larger
than 1.

(3) Convexness. Let u represent a set of contour points obtained
from level set and its convex hull (denoted as C(u)). The con-
vexity measure is defined as Cv(u) = Area(u) / Area(C(u)).

(4) Moment invariants: Moments are extensively used for shape
representation and pattern recognition, which makes them a
very useful feature set to include [22]. The seven moment in-
variants that are first introduced by Hu in Ref. [22] are used.

B Statistics features
(1) Gray histogram

The gray histogram is a first-order statistics feature which acts
as a graphical representation of the intensity distribution in a
digital image. It plots the number of pixels for each intensity
value and is shown in the GUI.

(2) Surface roughness
Surface roughness is usedwidely in the industry and is generally
used to quantify the smoothness of a surface finish or surface
texture. The arithmetic mean deviation of surface profile Ra is
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Fig. 2. Typical HVAC duct images.
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universally recognized and can be defined as a critical feature of
surface roughness in ducts. Luk [23] proposed an approach to
measuring the surface roughness based on images. The rough-
ness is defined as the ratio between the standard deviation of
the image gray-scale and the root mean square height of the
gray-level distribution along the row axis or column axis.
More reasonably, we used a modified formula to achieve only
one roughness average for full representation of duct surface
roughness. The modified method is based on the polar-
coordinate scanning. Instead of scanning along X and Y coordi-
nates, it now performs a circular scanning in the polar coordi-
nate. The center of the image acts as the original point of the
polar coordinate. We then calculate the aggregate of roughness
Ra of each rotationally scanned profile according to the rotation
angle, γ. Then the new defined Ra is given by:

Raja¼γ ¼
1

N−1

Xl−2
i¼0

ni i−μð Þ2

1
N

Xl−1
i¼0

ni
2

0
B@

1
CA

1=2

; ð3Þ

where

N ¼
Xl−1

i¼0
ni; μ ¼ 1

N

Xl−1
i¼0

i � ni; ð4Þ

where ni denotes the number of pixels whose gray scale is i at γ
angle, and l is the gray-scale number. When it scans 360°, the
surface roughness of the whole image can be computed and
displayed in the GUI. In Ref. [24], the results from the previous
work agree with those done by Luk's method.

(3) Co-occurrence matrices
The gray level co-occurrence matrix pi,j(θ, s), which have been
widely used in texture classification or texture segmentation
[21], is defined as the probability of pixels i and jwith a specified
distance of s and direction of θ occurring in the image. Generally,
there are 14 types of co-occurrence features derived from co-
occurrence matrices useful for pattern classification. However,
the relationship between the co-occurrence features is not abso-
lutely independent so that the redundant featureswould reduce
the efficiency of pattern classification. Through a discriminant
analysis, the most independent co-occurrence features with
correlation coefficients of less than 0.5 were found as entropy
(Entro), correlation (Corre), and cluster tendency (Clust) [14].
In this paper, three features have been chosen to describe the
texture of in the HVAC duct images:

Entro ¼ −
Xn
i¼1

Xn
j¼1

Pij � logPij; ð5Þ

Corre ¼
Pn

i¼1

Xn
j¼1

i � jð ÞPij−μx μy

σxσy
; ð6Þ
Clust ¼
Xn Xn

i−μx þ j−μy

� �2 � Pij; ð7Þ

i¼1 j¼1

where

Pij ¼
MijXn

i¼1

Xn
j¼1

Mij

; μx ¼
Xn
i¼1

Xn
j¼1

i � Pij; μy ¼
Xn
i¼1

Xn
j¼1

j � Pij; ð8Þ

σ x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xn
j¼1

i−μxð Þ2 � Pij

vuut ;σy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xn
j¼1

i−μy

� �2 � Pij:

vuut ð9Þ

Co-occurrence features are affected by the distance and the direc-
tion between the two pixel positions mainly and the gray scale
quantization levels are not important in the general case. The
distance and direction between the two adjacent pixels have
the inherent discipline and they do not change the feature value
ration between different textures. In this paper, the distance
s = 1 and the direction θ = 0°, 45°, 90°, and 135° are chosen.

(4) Wavelet-based features
Wavelet-based features can extract the information in the
frequency domain, and their effectiveness in performing the
texture analysis has been proved [24]. The subbands of the
digital images are generated by using the discrete wavelet
transform (DWT) [25]. Within each subband, the following
features are calculated [24]:

f 1 l; qð Þ ¼ 1
A

X
j

X
j

Ii; j l; qð Þ
��� ���; ð10Þ

f 2 l; qð Þ ¼ − 1
log A

X
j

X
j

Ii; j l; qð Þ
��� ���

N
log

Ii; j l; qð Þ
��� ���

N

0
@

1
A; ð11Þ

where N = Σ i,l|Ii, j|(l,q), l represents the decomposition level,
q is the subband number within the decomposition level l,
and A is the area of each subband. The feature f1(l,q) repre-
sents the amount of signal energy at a resolution, and feature
f2(l,q) shows the non-uniformity of the subband values. In
our paper, a wavelet transform with three levels is adopted.

(5) Local binary patterns (LBP)
The LBP operator [26] is originally designed for texture de-
scription. It is a robust but theoretically and computationally
simple approach. It combines the separate statistical and
structural approaches to texture analysis by simultaneously
analysis of both stochastic microtextures and deterministic
macrotextures. In addition, it has shown excellent perfor-
mance in many comparative studies.
A form of the local texture T is defined as T ≈ t(s(g0 − gc),⋯,
s(gp − 1 − gc)), where gc is the gray value of the center
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pixel of a local neighborhood. gp is the gray value of the pth
symmetric neighborhood pixel in a circle of radius R. If x
≥ 0, s(x) = 1, otherwise, s(x) = 0. For simplicity, we just
choose p = 8, R = 1 in this paper. As an extension of the
LBP operator which is called “uniform” patterns, the numbers
of transitions or discontinuities in the circular presentation
of the pattern are computed [26]. Then, the discrete occur-
rence histogram of the “uniform” patterns is computed over
an image or a region of an image as a texture feature.

3.3. 3-D texture re-construction

“Shape from shading”methods [27] are implemented to recover the
3-D texture map from the 2-D surface image of the duct. Assume that
the gray value of the image is linearwith respect to the surface radiosity,
and thenwe could find the relationship between image intensity Ip(x, y)
and surface normal N(x, y). Eq. (12) gives the relationship between sur-
face normals and a parameterized equation of the surface which can be
used to generate a mesh to reconstruct the geometry of the object.

N x; yð Þ ¼ g x; yð Þ
g x; yð Þk k2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂ f 2

∂2x
þ ∂ f 2

∂2y

s −∂ f
∂x −∂ f

∂y 1
� �T

; ð12Þ

where g(x, y) is the surface vector, f(x, y) is the equation for the param-
eterized surface which can then be integrated over x and y to yield the
final model. Consider that the graph of f (x, y) = xy, which is linear in
both the x and y directions. If we assume that the value of the unit nor-
mal at some point (x, y) is (a (x, y), b (x, y), c (x, y)) and the depth z(x, y)
is the function of the surface, then it is easy to have that:

∂z
∂x ¼ −a x; yð Þ

c x; yð Þ and
∂z
∂y ¼ −b x; yð Þ

c x; yð Þ : ð13Þ

If we assume that the z-value at the reference point is 0, the z-value
at any other point will be an integral of (∂z / ∂x,∂z / ∂y) [27] along some
paths. From above approaches, the 3-D surface texture map can be re-
constructed. Obviously, the recovered 3-D surface texture provides
more clear and complete information to characterize the duct surface
texture. According to the 3-D map, roughness and edge detection
map, operators can easily and completely assess the inner condition of
the duct.

3.4. Feature selection based on Tabu search

Feature selection is a dimensionality reduction problem in order to
reduce measurement costs, shorten computational time, relieve the
curse of dimensionality, and improve classification accuracy [15]. The
unsupervised clustering algorithms such as k-means are sensitive to ir-
relevant features and noise. Therefore feature selection can improve the
performance of clustering as reported in Ref. [16]. Our objective of
employing Tabu search is to find an optimal subset having a predefined
number of features to yield the lowest error rate of the classifier. The
Tabu search flow chart is shown in Fig. 3.

An example of initial solution is shown in Fig. 4. The TS begins from
a predefined number of features. 0 indicates that the feature is not in-
cluded in the solution while 1 indicates that it is. The initial weight of
combining classifier is set as 0.5. The weight values range from 0 to 1,
and its step size is 0.1, i.e. α ∈ [0,1].

In Refs. [16] and [17], the cost function is defined as

Cost ¼
Xn
i¼1

Ci � NEi; ð14Þ
where n is the number of classes, Ci is the misclassification cost for each
sample in the ith class. NEi is the total number of misclassified samples
for the ith class. They did not differentiate between the majority class
and the minority class in cost function. Our objective function aims to
minimize the error rate of minority class in the context of the classifica-
tion accuracy of majority class being acceptable. So we add cost sensi-
tiveness of imbalance distributions into the cost function as given in
Eq. (15).

Cost ¼
Xn
i¼1

Ci �
NEi
Ni

; ð15Þ

where Ni is the total number of samples in the ith class.
From Eq. (15), it can be seen that the lesser the total number of sam-

ples in minority class, the bigger the cost value, such that Tabu search
emphasizes the importance of achieving high recognition rate ofminor-
ity class. During each iteration, neighbors are generated by randomly
adding and deleting a feature from the feature vector of size n. Among
the neighbors, 10Mn neighborhood solutions are then evaluated using
Eq. (15) and the one with the best cost, i.e. the solution results in the
minimum value of Eq. (15), is selected and adopted as a new current
solution for the next iteration. The initial standard parameters of
Tabu Search are: N = T =

ffiffiffiffi
F

p
[16], where N is the number of neigh-

borhood solutions, T is the size of Tabu list and F is the number of fea-
tures. The size of Tabu list can be determined by experiments. There
is an occurrence of cycling when the size is too small, and there is a
deterioration of solution quality when the size is too large. The ter-
mination condition is the set number of iterations. For more details
refer to Ref. [16].

3.5. Duct condition inspection using seeded k-means feature-clustering and
C4.5 algorithm

3.5.1. Anomaly detection with seeded k-means feature-clustering
Although all duct samples are artificially classified into k typical clas-

ses according to their severity and appearance, the diversities of feature
distributions within each class are not addressed. The class of contami-
nated ducts and physical defect ducts include many subclasses such as
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debris, rust, hole and crack. There usually exist large differences be-
tween their feature distributions and some overlaps within the same
subclasses. We first combine the selected features as a one-
dimensional feature vector for feature clustering. We then employ the
feature-clustering approach, seeded k-means [18], to preliminarily clas-
sify these features within the classes.

In many cases, knowledge of the relevant classification is incom-
plete. The semi-supervised clustering can group data using labeled
data to generate seed clusters that initialize a clustering algorithm.
Proper seeding biases clustering towards a good region of the search
space, thereby it can reduce the effects from irrelevant features and
noises in unsupervised clustering. In the seeded k-means, the seed clus-
ter is only used for the initialization. The steps in the seeded k-means-
based duct detection are as follows:

1. Initialize k cluster centers, rh, using the mean of lth in the seed set
according to supervision, for h = 1,…, k. (We assume that there is
at least one seed point that belongs to each class.)

2. Assign cluster: Assign each data point x to the nearest cluster h, for
h ¼ argmin

h
x−rhk k2.

3. Update each cluster center rh as themean of all data that belongs to it.
4. Repeat steps 2–4 until cluster centers are stable.
5. For each test sample Z:

a. Compute the distanceD(ri, Z), i=1,…, k, find the cluster rl, that is
closest to Z.

b. Classify Z using either the threshold rule or the Bayes decision
rule.

The threshold rule: Assign Z → 1 (Z belongs to the cluster rl) if
P(ωl = 1|Z ∈ Cl) N τ, and τ is a threshold; otherwise Z → 0, where
“0” and “1” represent normal and anomaly class, respectively. ωl

represents the anomaly class in the cluster rl, and P(ωl = 1|Z ∈ Cl)
represents the probability of anomaly samples in rl.

The Bayes decision rule: Assign Z → 1 (Z belongs to the cluster rl) if
P(ωl = 1|Z ∈ Cl) N P(ωl = 0|Z ∈ Cl); otherwise Z → 0, where ωl repre-
sents the anomaly class in the cluster rl, and P(ωl=0|Z∈ Cl) represents
the probability of normal samples in rl.

3.5.2. Anomaly detection with C4.5 decision tree
C4.5 decision tree is an extension of the ID3 algorithm to address

some issues not dealt with by ID3, such as avoiding overfitting the
data, reduced error pruning, handling continuous attributes, and so
on. C4.5 builds decision trees from a set of training data using the con-
cept of information gain ratio in the same way as ID3. The information
gain ratio on each attribute A, is defined as

CainRatio S;Að Þ ¼ Gain S;Að Þ
−
Xc

i¼1
pi log2 Pið Þ ð16Þ

where S is the total input space, Gain(S, A) is information gain on attri-
bute A as ID3. pi represents the probability of class “i”. The attribute
with the highest information gain ratio, say B, is chosen as the root
node of the tree. Next, a new decision tree is recursively constructed
over each value of B using the training subspace S − {SB}. A leaf-node
or a decision-node is formed when all the instances within the available
Clustering Used
K-MeansOrignial Features

Feature Selection
Using Tabu Search

C4.5

Selected Features

Misclassified Samples

Weighted Combined
Final Decision

Cost-sensitive Functioncc

DD
Training

Fig. 5. The diagram of the proposed seeded k-means/C4.5 detection algorithm.
training subspace are from the same class [13]. For duct anomaly detec-
tion, the C4.5 decision tree outputs the probability of belonging to a class.

3.5.3. Seeded k-means/C4.5 classification algorithm for duct condition
assessment

The seeded k-means/C4.5 has two steps: 1) training phase and
2) testing phase. During the training phase, the seed set is first assigned
to k classes according to the supervision, as shown in Fig. 5. Then the
feature-clustering method is used to partition the training space into k
disjoint clusters, C1, C2,…, Ck and the centroids of C1, C2,…, Ck are obtain-
ed as r1, r2,…, rk, respectively. A C4.5 is then built and trained based on
the desired outputs. The k-means method ensures that each training
instance is associated with only one cluster. However, if there are
subgroups or overlaps within a cluster, the C4.5 decision trained on
that cluster refines the decision boundaries by partitioning the samples
over the feature space.

Given a sample S, the distances d1, d2,…, dk between the sample S
and the centroids r1, r2,…, rk of k clusters are achieved, respectively.
For each class, we use the following equation to obtain the final
probability.

Pl ¼ α � μ l þ 1−αð Þ � Dl � P ωl ¼ 1jZ ∈ Clð Þ; l ¼ 1;…;n;

whereDl ¼ 1− dlXk
i¼1

di;
ð17Þ

whereDl is the scale factor of Euclidean distance, μl∈ (0,1)is the C4.5
output for the lth class, and n is the number of anomaly samples clas-
sified into the lth class in k-means. α is the combiningweighted value
and is determined by TS. The final detection results are acquired by
using the threshold rule. The feedback and the misclassified samples
from the final classification results allow the Tabu search to iteratively
search for the feature vectors that can improve the classification accura-
cy. In the testing phase, only k-means/C4.5 is used to classify the
instance.

4. Experiments

4.1. Experimental setup

4.1.1. The sensor prototype for HVAC duct inspection
The sensor system consists of two high resolution CCD cameras that

can capture the two-direction duct images by pan and tilt cameras, and
the active infrared LED lighting source that produces 1.6mW850 nm in-
frared light. Compared with ultrasonic and laser lighting sources, our
system is compact, low cost, and can acquire clear images. The inspec-
tion principle of the sensor is illustrated in Fig. 6. The pan and tilt CCD
cameras and IR lighting source are fixed at the front end of the robot
arm of our pipeline robot. The sensor can capture surrounding images
of the duct by rotating 360° around the axis of the robot arm and adjusts
the image size by vertical locomotion. If needed, the manipulator of the
robot can sample the particles within the duct, and then cleaning
Two CCD Cameras

PC

Locomotion and rotation

Fig. 6. Schematic diagram of the inspection principle of the senor.



Fig. 7. Snapshot of the GUI interface with a duct image having rust and a hole.
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solution and sterilizing fluid will be determined after the assay and
analysis of the particles.

4.1.2. Graphic User Interface (GUI)
The operators can remotely control the robot through the visual

feedback. The image from the tilt camera is mainly used for the naviga-
tion. The image from pan camera is used to segment the image and
extract features for the assessment of duct condition. CCTV images,
the processed duct images, and the extracted features are displayed in
a Graphic User Interface (GUI) in real-time. Fig. 7 is a snapshot of the
GUI. As shown in the figure, the GUI contains three characterization
windows displaying the roughness graph, histogram graph, and edge
detection map, and two image windows. The small image window dis-
plays the original image captured from the sensor; the big one shows
the enhanced 2-D image after image processing. Associated with three
graphs and two image windows, several functional buttons that can
Table 1
Sub-image samples of each class.

Sub-images Clean ducts Clean ducts with texture Contam

Number the samples 263 362 108
adjust the image contrast, brightness, and threshold online, are shown
in the left side of the interface. Using the “shape from shading”methods
[27], the re-constructed 3-D surface map from the 2-D image is shown
in the top of Fig. 7.

4.2. Image data set

Many HVAC duct images of size 860 × 780 have been acquired from
Shanghai, China. The contaminated ducts and physical defect ducts in-
clude some sub-classes. However, it is difficult to acquire enough images
of minority classes because of the imbalance distribution of samples. The
actual distribution of samples includes about more than 93% clean ducts
(majority class), 6% contaminated ducts (settled dust, debris, and so
on), and less than 1% physical defect ducts (holes, cracks, gaps and
rust). Sampling techniques can correct problems with the imbalance dis-
tribution of a data set [15]. Both oversampling of the small class and
ination ducts Debris Rust ducts Gaps and cracks Holes

78 92 83 5



Clean ducts

Clean surface with metal texture

Gaps  and cracks

Settled dust

Rust

Various debris 

Fig. 8. Typical sub-images of HVAC ducts.
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undersampling of the large class are used in our date set. From the above
original images, we extract 991 sub-images which include some typical
samples, as listed in Table 1. The typical sub-images are shown in Fig. 8.
The ducts with both contaminants and physical defects should be classi-
fied into physical defect class because the samples of the physical defect
class are the least and these ducts need to be restored.

For each sub-image, we extract 102 original features including 13
shape features, 32 features from gray level co-occurrence matrix, 16
wavelet-based features, 36 local binary patterns (LBP), and 5 other
features. These features can describe the roughness, density, shape,
multi-spectra, and texture of the images.

4.3. Experimental results

4.3.1. Experimental results of image segmentationwith the level set method
In our paper, the Otsu's technique is firstly adopted to segment the

air duct image. A region-filling algorithm [25] is applied to eliminate
(b)(a) (c)

Fig. 9. The final and intermediate results of image segmentation in a typical image sample. (a) O
by Otsu' method. (d) The final segmented image with mixed red curves of CV level set. (e) The
the holes within the segmented regions. Then, the morphological
open and close operators with a three-pixel-diameter disk structure
element are performed to filter very thin edges and random noise
regions, which may be caused by the small debris or color of the back-
ground. The level set is lastly used to refine the coarse edges of the duct
image. The proposed image segmentation method works very well for
duct images as shown in Fig. 9, which represents the processing proce-
dure of our image segmentation method step by step.

4.3.2. Detection experiments based on different feature sets
In our experiment, we just use 5-fold cross validation to the validity

of features selection and classification performance because of the defi-
ciency of minority classes. To evaluate the classification performance of
the minority classes, the correct rate of detection is defined as follows:

Cr Cið Þ ¼ NC Cið Þ
N Cið Þ � 100% ð19Þ
(d)                           (e)

riginal image. (b) Otsu' segmented image. (c) The imagewith the coarse edges segmented
final segmented gray-value image by level set.

image of Fig.�8
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where N(Ci) is the total number of class Ci, NC(Ci) is the number of cor-
rect classification in class Ci. For multi-class problem, a new criterion,
total AUC, is introduced in Ref. [28]. In this paper, a separate AUC for
each class is firstly calculated, such that the AUC of class Ci is calculated
by considering all the samples of class Ci as positives and the samples of
all other classes as negatives. Then, the total AUC is calculated as the
summation of the AUCs weighted by the class prior probability given
as follows:

Auct ¼
X
Ct

Auc Ctð Þ � P Ctð Þ; ð20Þ

where Auc(Ci) is the AUC of Ci, and P(Ci) is the prior probability of Ci.

1) Detection experiments based on single feature set
To evaluate the discriminating capability of the features the experi-
ments of anomaly detection using k-means/C4.5 with various fea-
ture sets are performed. For the k-means and C4.5 cascading, the
value of k was set to 7 according to the appearance of duct images.
The experiment aims to compare the classification performance
using k-means + C4.5 based on every single feature set, i.e. shape
set, wavelet-based features (WBF) set, LBP set, and gray level co-
occurrence matrix (GLCM) based feature set. In Fig. 10, the results
show that the shape feature set has the worst classification perfor-
mance, WBF, LBP and GLCM have relatively high performance, and
MGDF's worse performance may be due to the instability of the
high-frequency component.

2) Detection experiments based on various combined feature sets and
Tabu-search selected features
To evaluate the results of feature selection using Tabu search, we
conduct a set of experiments using the proposed k-means + C4.5
ensemble classifier based on different combined (by hand) feature
sets and the feature sets selected by Tabu search. The results are
shown in Fig. 11. From Figs. 10 and 11, it can be seen that the perfor-
mance using combined feature sets are better than the performance
of using the single feature set in duct inspection. The selected feature
sets by Tabu search are more suitable for the duct condition inspec-
tion than all features. This is because the irrelevant features that
“confuse” k-means method are removed by feature selection, and
then the seeded k-means algorithm is capable of finding clusters
with good quality. The cost-sensitive function of TS is applied to at-
tach more importance to recognition rate of the minority class in
the process of feature selection. Fig. 11 clearly demonstrates the sig-
nificant improvement in correct rates of detection for minority clas-
ses (2nd and 3rd) based on the selected feature using the Tabu
search with cost-sensitive function.
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Fig. 10. Bar graph of the average correct rates of detection based on every single feature
set. 1st class: normal ducts; 2nd class: contamination ducts; 3rd class: physical defect
ducts.
4.3.3. Detection experiments on duct inspection using different
classification methods

We have applied five methods, such as k-means, seeded k-means,
C4.5, SVM, and seeded k-means/C4.5, to survey duct conditions based
on the features selected by Tabu search. The achieved results are listed
in Table 2.

It can be seen that the correct rates of detection of k-means is lowest,
while the proposed approach, seeded k-means/C4.5, has the highest
correct rates. Maybe, the reasons are overfitting on high-dimensional
image data sets in the clustering algorithms. The SVM based detection
method has better performance of detection than other single classifica-
tion methods. The duct inspection performance of combining seeded
k-means and the C4.5 method using Tabu-search selected feature
(FTS) is better than that of the supervised methods and anyone of the
two methods.

We should note that all of the approaches in Table 2 used our
method of Tabu search with cost-sensitive function to obtain the suit-
able parameters and features. We can regard combining k-means and
C4.5 as the only reason for improving the correct rates of detection in
HVAC duct inspection. We can draw a conclusion that combining
k-means and C4.5 outperforms each of the two methods. The C4.5 re-
vises decision boundaries by learning the subgroups within the cluster,
relieves the two problems in clustering, i.e. the class dominance and the
forced assignment problem, and improves the performance of duct in-
spection. At the same time the total AUC of combining k-means and
C4.5 has be improved. However, there is no clear improvement of the
total AUC between SVM and our proposed method.

5. Conclusions and future work

In this paper, we propose a hybrid duct detection approach by com-
bining Tabu search and k-means/C4.5 algorithm. The seeded k-means
and C4.5 are combined to improve the duct detection performance.
The k-means method is first applied to partition the training instances
into k disjoint clusters corresponding to the labeled seed set. The C4.5
on each cluster then refines the decision boundaries by learning the sub-
groups within the cluster. We introduce the cost-sensitive function into
Tabu search for selecting features and construct new sample sets by
using oversampling of the minority class and undersampling of the ma-
jority class to relieve the imbalance distribution of duct samples such
that the most discriminating features are selected in imbalance distribu-
tions and result in higher detection accuracy of the minority class.

Future researchwork should be geared towards developing an effec-
tive and efficient image preprocessing method so as to further improve



Table 2
Comparison of correct rates of detection by various methods based on FTS.

Duct detection method Correct rates of detection (%)

1st class 2nd class 3rd class Total AUC

Normal
ducts

Contamination
ducts

Physical defect
ducts

K-means 85.7 70.8 67.3 72.3
Seeded k-means 86.8 72.4 70.1 71.8
C4.5 88.1 73.5 69.2 71.5
SVM 94.8 76.3 78.6 80.1
Seeded k-means/C4.5 94.2 81.6 80.1 80.2
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the classification performance. To explore other potential solutions, we
will try to combine other methods with clustering, such as hierarchical
clustering, SVM, and boosting.
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